Advanced Nuclear's Role as a ZELFR*

*Zero-Emitting Load Following Resource

Chris Nolan, Vice President Nuclear Regulatory Affairs, Policy and Emergency Planning South Carolina Governor's Nuclear Advisory Committee – Oct. 18, 2021

Duke Energy Nuclear – 11 Generating Units at 6 Sites in the Carolinas

Station	Capacity (MW)	Units	Commercial Operation	License Extension
Oconee	2,554	3 PWRs	1973	2033, 2034
McGuire	2,316	2 PWRs	1981	2041, 2043
Catawba*	2,310	2 PWRs	1985	2043
Brunswick	1,870	2 BWRs	1975	2034, 2036
Harris	964	1 PWR	1987	2046
Robinson	759	1 PWR	1971	2030
Total	10,773	11		

Duke Energy Nuclear

Duke Energy Projected Generation Mix

2050

*Renewables include hydro, wind, solar, landfill gas, biomass, etc.

Department Of Energy's (DOE) Advanced Reactor Demonstration Program (ARDP)

TerraPower/GE-Hitachi Natrium Reactor

- Duke Energy is partnering with TerraPower and Team Natrium, which was chosen as one of the demonstration awards
 - TerraPower and GE-Hitachi (Reactor Design/Licensing)
 - Bechtel Power (Procure/Construction)
 - Duke Energy, Energy Northwest, & PacifiCorp (Utilities)
 - Global Nuclear Fuels, Centrus Energy, and Orano (Fuels)
 - o NC State, Oregon State, University of Wisconsin, and Idaho and Argonne national labs
- Must be designed, sited, licensed, constructed, and operational within 7 years (i.e., by end of 2027)
- Provides initial \$80 million to the project from DOE for first year (up to \$2 billion total through completion)
- The Natrium reactor is a 345-500 megawatt Liquid Sodium-Cooled Fast Reactor w/ Thermal Storage
 - Operates at high temperature and atmospheric pressure (approximately)
 - o Utilizes a molten salt storage system, can load follow while reactor maintains 100% power
 - High efficiency steam for flexible operations; industrial process heat applications, hydrogen production
 - o Uses high-assay, low-enriched uranium (HALEU) in fuel assemblies

X-energy Xe-100 Reactor

- X-energy's Xe-100 was the other reactor design chosen for a demonstration award under ARDP
 - 80-megawatt High Temperature Gas-Cooled Reactor (HTGR) Standard design is a four-pack of reactors (320 megawatts)
 - $_{\odot}$ Uses TRISO fuel with pebble bed technology Uses Helium for cooling
 - Energy Northwest also partnered with X-energy in the ARDP
 - In April 2021, X-energy and Energy Northwest signed an MOU with Grant County, Washington., Public Utility to design, build, and operate the Xe-100 HTGR plant, to be located adjacent to the Columbia Nuclear Generating Station

Department Of Energy's Advanced Reactor Demonstration Program (ARDP)

Risk Reduction Awards under ARDP

- Kairos Power For reduced-scale Fluoride Salt-Cooled High Temperature Reactor (KP-FHR) [\$303 million over 7 years]
 - o 140-megawatts; TRISO fuel with pebble bed technology
 - Will build the prototype Hermes reactor in Oak Ridge, Tenn., at former DOE site
 - o Agreement in May 2021 for TVA to provide Licensing, Engineering, and Operations support for the prototype
- Holtec LLC For early-stage design, engineering, and licensing of SMR-160 Light Water-Cooled SMR [\$116 million]
 - o 160 MWe, Plan to demonstrate the reactor at the Oyster Creek site in New Jersey
 - Started pre-application process with submittal of Topical Reports to the NRC
- Southern Co. To build and operate reduced-scale of TerraPower's Molten Chloride Fast Reactor (MCFR) [\$90 million]
 - The MCFR can be sized up to 1,200 megawatts
 - o Liquid core utilizes molten salts as both fuel and coolant
- BWXT Advanced Technologies BWXT Advanced Nuclear Reactor [\$85 million]
 - 1 5 megawatts; transportable micro-reactor
 - Will use TRISO fuel in pellet form
 - Separately, BWXT and X-Energy selected to develop Project Pele mobile microreactor for Department of Defense
- Westinghouse Electric eVinci Micro-reactor [\$7 million]
 - 1 5 megawatts; transportable micro-reactor, uses heat pipe cooling
 - Will use TRISO fuel in pellet form

Duke Energy Industry Engagement

Technical Advisory Boards

- Natrium Utility Advisory Committee
- Kairos Power Advisory Board
- NuScale Advisory Board
- Terrestrial Corp. Industrial Advisory Board
- Molten Chloride Fast Reactor (MCFR) Utility Advisory Committee
- Versatile Test Reactor (VTR) Utilities Advisory Board
- Advanced Reactors Technical Advisory Group (ARTAG)
- General Fusion Market Development Advisory Committee (MDAC)

Working Groups and Task Forces

- New Plant Advisory Committee (NPAC)
- Advanced Reactor Regulatory Task Force (ARRTF)
- Advanced Nuclear End Users Task Force
- Advanced Nuclear Technology (ANT) Program
- Advanced Reactor Fuels Task Force
- Advanced Reactor Forum
- Molten Salt Reactor Technology Working Group
- New Plant Working Group (NPWG)
- Part 53 Rulemaking Working Group
- New and Advanced Reactor Steering Committee
- SMR Start

Early Site Permit (ESP) with Limited Work Authorization (LWA)

- Four years and \$50 million to complete
- Available for 20 years and can be renewed for 10 to 20 years
- Permit can be transferred with the property
- Cost Recovery DOE Cost Share / State Legislative Initiative
- Critical siting factors
 - Water, seismic, need for power, transmission, endangered species, historic
 - Select multiple sites to conduct field studies
 - Two years to complete field work and environmental report
- Opportunities for federal, state, and public engagement

BUILDING A SMARTER ENERGY FUTURE ®